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Abstract

When evaluating a trading strategy, it is routine to discount the Sharpe ratio
from a historical backtest. The reason is simple: there is inevitable data min-
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provides a statistical framework that systematically accounts for these multiple
tests. We propose a method to determine the appropriate haircut for any given
reported Sharpe ratio.
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1 Introduction

A common practice in evaluating backtests of trading strategies is to discount the
reported Sharpe ratios by 50%. There are good economic and statistical reasons for
reducing the Sharpe ratios. The discount is a result of data mining. This mining may
manifest itself by academic researchers searching for asset pricing factors to explain
the behavior of equity returns or by researchers at firms that specialize in quantitative
equity strategies trying to develop profitable systematic strategies.

The 50% haircut is only a rule of thumb. The goal of our paper is to develop an
analytical way to determine the magnitude of the haircut.

Our framework relies on the statistical concept of multiple testing. Suppose you
have some new data, Y, and you propose that variable X explains Y. Your statistical
analysis finds a significant relation between Y and X with a t-ratio of 2.0 which has
a probability value of 0.05. We refer to this as an independent test. Now consider
the same researcher trying to explain Y with variables X1, X2, . . . , X100. In this case,
you cannot use the same criteria for significance. You expect by chance that some of
these variables will produce t-ratios of 2.0 or higher. What is an appropriate cut-off
for statistical significance?

In Harvey and Liu (HL, 2013), we present three approaches to multiple testing.
We answer the question in the above example. The t-ratio is generally higher as the
number of tests (or X variables) increases.

Consider a summary of our method. Any given strategy produces a Sharpe ratio.
We transform the Sharpe ratio into a t-ratio. Suppose that t-ratio is 3.0. While a
t-ratio of 3.0 is highly significant in an independent test, it may not be if we take
multiple tests into account. We proceed to calculate a p-value that appropriately
reflects the multiple testing. To do this, we need to make an assumption on the
number of previous tests. For example, Harvey, Liu and Zhu (HLZ, 2013) document
that at least 314 factors have been tested in the quest to explain the cross-sectional
patterns in equity returns. Suppose the adjusted p-value is 0.05. We then calculate
an adjusted t-ratio which, in this case, is 2.0. With this new t-ratio, we determine an
adjusted Sharpe ratio. The percentage difference between the original Sharpe ratio
and the adjusted Sharpe ratio is the “haircut”.

The Sharpe ratio that obtains as a result of the multiple testing has the following
interpretation. It is the Sharpe ratio that would have resulted from an independent
test, that is, a single measured correlation of Y and X.

We argue that it is a serious mistake to use the rule of thumb 50% haircut. Our
results show that the multiple testing haircut is nonlinear. The highest Sharpe ratios
are only moderately penalized while the marginal Sharpe ratios are heavily penalized.
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This makes economic sense. The marginal Sharpe ratio strategies should be thrown
out. The strategies with very high Sharpe ratios are probably true discoveries. In
these cases, a 50% haircut is too punitive.

Our method does have a number of caveats – some of which apply to any use
of the Sharpe ratio. First, high observed Sharpe ratios could be the results of non-
normal returns, for instance an option-like strategy with high ex ante negative skew.
In this case, Sharpe ratios should not be used. Dealing with these non-normalities is
the subject of future research. Second, Sharpe ratios do not necessarily control for
risk. That is, the volatility of the strategy may not reflect the true risk. However,
our method also applies to Information ratios which use residuals from factor models.
Third, it is necessary in the multiple testing framework to take a stand on what
qualifies as the appropriate significance level, e.g. is it 0.10 or 0.05? Fourth, a
choice needs to made on the multiple testing framework. We present results for three
frameworks as well as the average of the methods. Finally, some judgment is needed
setting the number of tests.

Given choices (3)-(5), it is important to determine the robustness of the haircuts to
changes in these inputs. We provide a program at http://faculty.fuqua.duke.edu/˜charvey/
backtesting that allows the user to vary the key parameters to investigate the impact
on the haircuts.

2 Method

2.1 Independent Tests and Sharpe Ratio

Let rt denote the realized return for an investment strategy between time t− 1 and t.
The investment strategy involves zero initial investment so that rt measures the net
gain/loss. Such a strategy can be a long-short strategy, i.e., rt = RL

t −RS
t where RL

t

and RS
t are the gross investment returns for the long and short position, respectively.

It can also be a traditional stock and bond strategy for which investors borrow and
invest in a risky equity portfolio.

To evaluate if an investment strategy can generate “true” profits and maintain
those profits in the future, we form a statistical test to see if the expected excess return
is different from zero. Since investors can always switch their positions in the long-
short strategy, we focus on a two-sided alternative hypothesis. In other words, in so
far as the long-short strategy can generate a mean return that is significantly different
from zero, we think of it as a profitable strategy. To test this hypothesis, we first
construct key sample statistics. Given a sample of historical returns (r1, r2, . . . , rT ),
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let µ̂ denote the mean and σ̂ the standard deviation. A t-statistic is constructed to
test the null hypothesis that the average return is zero:

t-ratio =
µ̂

σ̂/
√
T
. (1)

Under the assumption that returns are i.i.d. normal,1 the t-statistic follows a t-
distribution with T − 1 degrees of freedom under the null hypothesis. We can follow
standard hypothesis testing procedures to assess the statistical significance of the
investment strategy.

The Sharpe ratio — one of the most commonly used summary statistics in finance
— is linked to the t-statistic in a simple manner. Given µ̂ and σ̂, the Sharpe ratio
(ŜR) is defined as

ŜR =
µ̂

σ̂
, (2)

which, based on Equation (1), is simply t-ratio/
√
T .2 Therefore, for a fixed T , a higher

Sharpe ratio implies a higher t-statistic, which in turn implies a higher significance
level (lower p-value) for the investment strategy. This equivalence between the Sharpe
ratio and the t-statistic, among many other reasons, justifies the use of Sharpe ratio
as an appropriate measure of the attractiveness of an investment strategy given our
assumption.

2.2 Sharpe Ratio Adjustment under Multiple Tests

Despite its widespread use, the Sharpe ratio for a particular investment strategy can
be misleading.3 This is due to the extensive data mining by the finance profession.
Since academics, financial practitioners and individual investors all have a keen in-
terest in finding lucrative investment strategies from the limited historical data, it is
not surprising for them to “discover” a few strategies that appear to be very prof-
itable. This data snooping issue is well recognized by both the finance and the science
literature. In finance, many well-established empirical “abnormalities” (e.g, certain
technical trading rules, calendar effects, etc.) are overturned once data snooping bi-
ases are taken into account.4 Profits from trading strategies that use cross-sectional

1Without the normality assumption, the t-statistic becomes asymptotically normally distributed
based on the central limit theorem.

2Lower frequency Sharpe ratios can be calculated straightforwardly assuming higher frequency
returns are independent. For instance, if µ̂ and σ̂ denote the mean and volatility of monthly returns,
respectively, then the annual Sharpe ratio equals 12µ̂/

√
12σ̂ =

√
12µ̂/σ̂.

3It can also be misleading if returns are not i.i.d. (for example, non-normality and/or autocor-
relation) or if the volatility does not reflect the risk.

4See Sullivan, Timmermann and White (1999, 2001) and White (2000).
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equity characteristics involve substantial statistical biases.5 The return predictability
of many previously documented variables is shown to be spurious once more advanced
statistical tests are performed.6 In medical research, it is well-known that discoveries
tend to be exaggerated.7 This phenomenon is termed the “winner’s curse” in medical
science: the scientist who makes the discovery in a small study is cursed by finding
an inflated effect.

Given the widespread use of the Sharpe ratio, we provide a probability based
multiple testing framework to adjust the conventional ratio for data snooping. To
illustrate the basic idea, we give a simple example in which all tests are assumed to
be independent. This example is closely related to the literature on data snooping
biases. However, we are able to generalize important quantities in this example using
a multiple testing framework. This generalization is key to our approach as it allows
us to study the more realistic case when different strategy returns are correlated.

To begin with, we calculate the p-value for the independent test:

pI = Pr(|r| > t-ratio)

= Pr(|r| > ŜR ·
√
T ), (3)

where r denotes a random variable that follows a t-distribution with T − 1 degrees of
freedom. This p-value might make sense if researchers are strongly motivated by an
economic theory and directly construct empirical proxies to test the implications of
the theory. It does not make sense if researchers have explored tens or even hundreds
of strategies and only choose to present the most profitable one. In the latter case, the
p-value for the independent test may greatly overstate the true statistical significance.

To quantitatively evaluate this overstatement, we assume that researchers have
tried N strategies and choose to present the most profitable (largest Sharpe ratio)
one. Additionally, we assume (for now) that the test statistics for these N strategies
are independent. Under these simplifying assumptions and under the null hypothesis
that none of these strategies can generate non-zero returns, the multiple testing p-
value, pM , for observing a maximal t-statistic that is at least as large as the observed
t-ratio is

pM = Pr(max{|ri|, i = 1, . . . , N} > t-ratio)

= 1−
N∏
i=1

Pr(|ri| ≤ t-ratio)

= 1− (1− pI)N . (4)

5See Leamer (1978), Lo and MacKinlay (1990), Fama (1991), Schwert (2003). A recent paper by
McLean and Pontiff (2013) shows a significant degradation of performance of identified anomalies
after publication.

6See Welch and Goyal (2004).
7See Button et al. (2013).
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When N = 1 (independent test) and pI = 0.05, pM = 0.05, so there is no multiple
testing adjustment. If N = 10 and we observe a strategy with pI = 0.05, pM = 0.401,
implying a probability of about 40% in finding an investment strategy that generates
a t-statistic that is at least as large as the observed t-ratio, much larger than the
5% probability for independent test. Multiple testing greatly reduces the statistical
significance of independent test. Hence, pM is the adjusted p-value after data snooping
is taken into account. It reflects the likelihood of finding a strategy that is at least as
profitable as the observed strategy after searching through N independent strategies.

By equating the p-value of an independent test to pM , we obtain the defining

equation for the multiple testing adjusted Sharpe ratio ŜR
adj

:

pM = Pr(|r| > ŜR
adj
·
√
T ). (5)

Since pM is larger than pI , ŜR
adj

will be smaller than ŜR. For instance, assuming
there are twenty years of monthly returns (T = 240), an annual Sharpe ratio of 0.75
yields a p-value of 8.0 × 10−4 for an independent test. When N = 200, pM = 0.15,
implying an adjusted annual Sharpe ratio of 0.32 through Equation (5). Hence,
multiple testing with 200 tests reduces the original Sharpe ratio by approximately
60%.

This simple example illustrates the gist of our approach. When there is multiple
testing, the usual p-value pI for independent test no longer reflects the statistical
significance of the strategy. The multiple testing adjusted p-value pM , on the other
hand, is the more appropriate measure. When the test statistics are dependent,
however, the approach in the example is no longer applicable as pM generally depends
on the joint distribution of the N test statistics. For this more realistic case, we build
on the work of HLZ to provide a multiple testing framework to find the appropriate
p-value adjustment.

3 Multiple Testing Framework

When more than one hypothesis is tested, false rejections of the null hypotheses
are more likely to occur, i.e., we incorrectly “discover” a profitable trading strategy.
Multiple testing methods are designed to limit such occurrences. Multiple testing
methods can be broadly divided into two categories: one controls the family-wise
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error rate and the other controls the false-discovery rate.8 Following HLZ, we present
three multiple testing procedures.9

3.1 Type I Error

We first introduce two definitions of Type I error in a multiple testing framework.
Assume that M hypotheses are tested and their p-values are (p1, p2, . . . , pM). Among
these M hypotheses, R are rejected. These R rejected hypotheses correspond to R
discoveries, including both true discoveries and false discoveries. Let Nr denote the
total number of false discoveries, i.e., strategies incorrectly classified as profitable.
Then the family-wise error rate (FWER) calculates the probability of making at
least one false discovery:

FWER = Pr(Nr ≥ 1).

Instead of studying the total number of false rejections, i.e., profitable strategies that
turn out to be unprofitable, an alternative definition — the false discovery rate —
focuses on the proportion of false rejections. Let the false discovery proportion (FDP)
be the proportion of false rejections:

FDP =


Nr

R
if R > 0,

0 if R = 0.

Then the false discovery rate (FDR) is defined as:

FDR = E[FDP ].

Both FWER and FDR are generalizations of the Type I error probability in inde-
pendent testing. Comparing the two definitions, procedures that control FDR allow
the number of false discoveries to grow proportionally with the total number of tests
and are thus more lenient than procedures that control FWER. Essentially, FWER
is designed to prevent even one error. FDR controls the error rate.10

8For the literature on the family-wise error rate, see Holm (1979), Hochberg (1988) and Hommel
(1988). For the literature on the false-discovery rate, see Benjamini and Hochberg (1995), Benjamini
and Liu (1999), Benjamini and Yekutieli (2001), Storey (2003) and Sarkar and Guo (2009).

9HLZ focus on the multiple testing adjusted threshold p-value and t-ratio, e.g., a threshold
t-ratio of 3.5 at 5% significance. We focus on the entire sequence of adjusted p-values.

10For more details on FWER and FDR, see HLZ.
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3.2 P-value Adjustment under FWER

We order the p-values in ascending orders, i.e., p(1) ≤ p(2) ≤ . . . ≤ p(M) and let the
associated null hypotheses be H(1), H(2), . . . , H(M).

Bonferroni ’s method11 adjusts each p-value equally. It inflates the original p-value
by the number of tests M :

Bonferroni : pBonferroni(i) = min[Mp(i), 1], i = 1, . . . ,M.

For example, if we observe M = 10 strategies and one of them has a p-value of
0.05, Bonferroni would say the more appropriate p-value is Mp = 0.50 and hence the
strategy is not significant.

Holm’s method12 relies on the sequence of p-values and adjusts each p-value by:

Holm : pHolm(i) = min[max
j≤i
{(M − j + 1)p(j)}, 1], i = 1, . . . ,M.

Starting from the smallest p-value, Holm’s method allows us to sequentially build
up the adjusted p-value sequence. For example, suppose we observe M = 3 strate-
gies and the ordered p-value sequence is (0.02, 0.05, 0.20). To assess the significance
of the first strategy, pHolm(1) = 3p(1) = 0.06. This is identical to the level pre-
scribed by Bonferroni. If our cutoff is 0.10, then this strategy is significant. The
second strategy yields pHolm(2) = max[3p(1), 2p(2)] = 2p(2) = 0.10, which is smaller

than Bonferroni implied p-value (pBonferroni(2) = 3p(2) = 0.15). Given a cutoff of
0.10, this strategy is not significant. Finally, the least significant strategy yields
pHolm(3) = max[3p(1), 2p(2), p(3)] = p(3) = 0.20, which is again smaller than the one

prescribed by Bonferroni (pBonferroni(3) = 3p(3) = 0.60). With 0.10 as the cutoff, this
strategy is again not significant.

Comparing the multiple testing adjusted p-values to a given significance level,
we can make a statistical inference for each of these hypotheses. If we made the
mistake of assuming independent tests, and given a 0.10 significance level, we would
“discover” two factors. In multiple testing, both Bonferroni’s and Holm’s adjustment
guarantee that the family-wise error rate (FWER) in making such inferences does
not exceed the pre-specified significance level. Comparing these two adjustments,
pHolm(i) ≤ pBonferroni(i) for any i.13 Therefore, Bonferroni’s method is tougher because it

11For the statistical literature on Bonferroni’s method, see Schweder and Spjotvoll (1982) and
Hochberg and Benjamini (1990). For the applications of Bonferroni’s method in finance, see Shanken
(1990), Ferson and Harvey (1999), Boudoukh et al. (2007) and Patton and Timmermann (2010).

12For the literature on Holm’s procedure and its extensions, see Holm (1979) and Hochberg
(1988). Holland, Basu and Sun (2010) emphasize the importance of Holm’s method in accounting
research.

13See Holm (1979) for the proof.

7



inflates the original p-values more than Holm’s method. Consequently, the adjusted
Sharpe ratios under Bonferroni will be smaller than those under Holm. Importantly,
both of these procedures are designed to eliminate all false discoveries no matter
how many tests for a given significance level. While this type of approach seems
appropriate for a space mission (parts failures), asset managers may be willing to
accept the fact that the number of false discoveries will increase with the number of
tests.

3.3 P-value Adjustment under FDR

Benjamini, Hochberg and Yekutieli (BHY )’s procedure14 defines the adjusted p-values
sequentially:

BHY : pBHY(i) =


p(M) if i = M,

min[pBHY(i+1) ,
M×c(M)

i
p(i)] if i ≤M − 1,

where c(M) =
∑M

j=1
1
j
. In contrast to Holm’s method, BHY starts from the largest

p-value and defines the adjusted p-value sequence through pairwise comparisons. Us-
ing the previous example, suppose we observe M = 3 strategies (c(M) = 1.83)
and the ordered p-value sequence is (0.02, 0.05, 0.20). To assess the significance of
the three strategies, we start from the least significant one. BHY sets pBHY(3) at
0.20, the same as the original value of p(3). For the second strategy, BHY yields
pBHY(2) = min[pBHY(3) , 3×1.83

2
p(2)] = 0.14. Finally, for the most significant strategy,

pBHY(1) = min[pBHY(2) , 3×1.83
1

p(1)] = 0.11. Notice that BHY adjusted p-value sequence

(0.11, 0.14, 0.20) is different from both Holm adjusted p-value sequence (0.06, 0.10, 0.20)
and Bonferroni adjusted p-value sequence (0.06, 0.15, 0.60).

Hypothesis tests based on the adjusted p-values guarantee that the false discovery
rate (FDR) does not exceed the pre-specified significance level. The constant c(M)
controls the generality of the test. In the original work by Benjamini and Hochberg
(1995), c(M) is set equal to one and the test works when p-values are independent
or positively dependent. With our choice of c(M), the test works under arbitrary
dependence structure for the test statistics.

The three multiple testing procedures provide adjusted p-values that control for
data snooping. Based on these p-values, we transform the corresponding t-ratios
into Sharpe ratios. In essence, our Sharpe ratio adjustment method aims to answer
the following question: if the multiple testing adjusted p-value reflects the genuine

14For the statistical literature on BHY’s method, see Benjamini and Hochberg (1995), Benjamini
and Yekutieli (2001), Sarkar (2002) and Storey (2003). For the applications of methods that control
the false discovery rate in finance, see Barras, Scaillet and Wermers (2010), Bajgrowicz and Scaillet
(2012) and Kosowski, Timmermann, White and Wermers (2006).
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statistical significance for an investment strategy, what is the equivalent single test
Sharpe ratio that one should assign to such a strategy as if there were no data
snooping?

Figure 1: Fitted and Empirical densities for the Log t-ratios of Strategies
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For both Holm and BHY, we need the empirical distribution of p-values for strate-
gies that have been tried so far. We use the mixture distribution from HLZ15 Figure
1 shows the empirical and fitted densities for the log t-statistics of strategies.16 Given
an estimate of the number of alternative strategies, we bootstrap from this mixture
distribution. In particular, assuming N strategies have been explored, we sample
N p-values from the mixture distribution.17 We then calculate the adjusted p-value
for an investment strategy based on this sample of p-values. We repeat the random
sampling many times, each time generating a new adjusted p-value. The median of
these adjusted p-values is taken as the overall estimate of the adjusted p-value for the
investment strategy.

15Assuming their sample of strategies fully covers published strategies that have a t-statistic
above 2.5 and employing a truncated likelihood framework, HLZ estimate the underlying t-ratio
distribution for all tried strategies. They estimate that the log t-statistics of explored strategy
returns follow a normal distribution with mean 0.90 and standard deviation 0.66. We use this
normal distribution truncated at log(2.5) to model log t-statistics that are below log(2.5). For log
t-statistics that are above log(2.5), we use the empirical t-ratio distribution in HLZ. In sum, the
mixture distribution is composed of a log normal distribution that is truncated at log(2.5) and an
empirical distribution for t-ratios that are above 2.5.

16The empirical density (shaded area) has an area of one, as required by a probability density
plot. The area under the fitted density, however, is multiplied by two to highlight how the right tail
of the fitted density matches that of the empirical density.

17To make sure that the p-value sample covers p-values for significant strategies, we sample
N × r p-values with replacement from the empirical distribution and sample N × (1 − r) p-values
independently from the truncated normal distribution, where r = 49% is HLZ’s estimate of the
proportion of strategies with a t-ratio above 2.5 among all explored strategies.
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3.4 Multiple Testing and Cross-validation

Recent works by De Prado and his coauthors also consider the ex-post data mining
issue for standard backtests.18 Due to data mining, they show theoretically that only
seven trials are needed to obtain a spurious two-year long backtest that has an in-
sample realized Sharpe ratio over one while the expected out of sample Sharpe ratio
is zero. The phenomenon is analogous to the regression overfitting problem when
in-sample superior models often perform poorly out-of-sample and is thus termed
backtest overfitting. To quantify the degreee of backtest overfitting, they propose
the calculation of the probability of backtest overfitting (PBO) that measures the
relative performance of a particular backtest among a basket of strategies using cross-
validation techniques.

Their work shares a common theme with our study. We both attempt to evaluate
the performance of an investment strategy in relation to other available strategies.
Their method computes the chance for a particular strategy to outperform the median
of the pool of alternative strategies. In contrast, our work adjusts the statistical
significance for each individual strategy so that the overall proportion of spurious
strategies is controlled.

Despite these similar themes, our works are different in many ways. First, the
objectives of analysis are different. Our work focuses on identifying the group of
strategies that generate non-zero returns while their work evaluates the relative per-
formance of a certain strategy that is fitted in-sample. As a result, a truly significant
factor that earns a nonzero return can still be highly significant after our multiple
adjustment even if all the other factors have even larger t-stats, whereas in their
framework it will likely have a PBO larger than 50% (i.e., overfitting probability
that is larger than 50%) because it is dominated by other more significant strategies.
Second, our method is based on a single test statistic that summarizes a strategy’s
performance over the entire sample whereas their method divides and joins the entire
sample in numerous ways, each way corresponding to an artificial “hold-out” peri-
ods. Our method is therefore more in line with the statistics literature on multiple
testing while their work is more related to out-of-sample testing and cross-validation.
Third, the extended statistical framework in Harvey and Liu (2013) needs only test
statistics. In contrast, their work relies heavily on the time-series of each individ-
ual strategy. While data intensive, in the De Prado approach, it is not necessary to
make assumptions regarding the data generating process for the returns. As such,
their approach is closer to the machine learning literature and ours is closer to the
econometrics literature.

18See Bailey et al. (2013a,b) and De Prado (2013).
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3.5 In-sample Multiple Testing vs. Out-of-sample Validation

Our multiple testing adjustment is based on in-sample (IS) backtests. In practice,
out-of-sample (OOS) tests are routinely used to select among many strategies.

Despite its popularity, OOS tests have several limitations. First, an OOS test may
not be truly “out-of-sample”. A researcher tries a strategy. After running an OOS
test, she finds that the strategy fails. She then revises the strategy and tries again,
hoping it would work this time. This trial and error approach is not truly OOS, but it
is hard for outsiders to tell. Second, an OOS test, like any other test in statistics, only
works in a probabilistic sense. In other words, a success for an OOS test can be due
to luck for both the in-sample selection and the out-of-sample testing. Third, given
the researcher has experienced the data, there is no true OOS.19 This is especially
the case when the trading strategy involves economic variables. No matter how you
construct the OOS test, it is not truly OOS because you know what happened in the
data.

Another important issue with the OOS method, which our multiple testing pro-
cedure can potentially help solve, is the tradeoff between Type I (false discoveries)
and Type II (missing discoveries) errors due to data splitting.20 In holding some
data out, researchers increase the chance of missing “true” discoveries for the short-
ened in-sample data. For instance, suppose we have 1,000 observations. Splitting the
sample in half and estimating 100 different strategies in-sample, i.e., based on 500 ob-
servations, suppose we identify 10 strategies that look promising based on in-sample
tests. We then take these 10 strategies to the OOS tests and find that two strategies
“work”. Note that, in this process, we might have missed, say, three strategies after
the first step IS tests due to bad luck in the short IS period. These “true” discoveries
are lost because they never get to the second step OOS tests.

Instead of the 50-50 split, now suppose we use a 90-10 data split. Suppose we
again identify 10 promising strategies. But among the strategies are two of the three
“true” discoveries that we missed when we had a shorter in-sample period. While this
is good, unfortunately, we have only 100 observations held out for the OOS exercise
and it will be difficult to separate the “good” from the “bad”. At its core, the OOS
exercise faces a tradeoff between Type I and Type II errors. While a longer in-sample
period reduces the chance of committing a Type II error (i.e., missing observations),
it inevitably increases the chance of committing a Type I error (i.e., false discoveries)
in the OOS test.

So how does our research fit? First, one should be very cautious of OOS tests
because it is hard to construct a true OOS test. The alternative is to apply our
multiple testing framework to identify the “true” discoveries on the full data. This
would involve making a more stringent cutoff for test statistics.

19See De Prado (2013) for a similar argument.
20See Hansen and Timmermann (2012) for a discussion on sample splitting for univariate tests.
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Another, and in our opinion, more promising framework, is to merge the two
methods. Ideally, we want the strategies to pass both the OOS test on split data
and the multiple test on the entire data. The problem is how to deal with the “true”
discoveries that are missed if the in-sample data is too short. As a tentative solution,
we can first run the IS tests with a lenient cutoff (e.g., p-value = 0.2) and use the OOS
tests to see which strategy survives. At the same time, we can run multiple testing
for the full data. We then combine the IS/OOS test and the multiple test by looking
at the intersection of survivors. We leave the exact solution to future research.

4 Applications

4.1 Three Strategies

To illustrate how the Sharpe ratio adjustment works, we begin with three investment
strategies that have appeared in the literature. All of these strategies are zero cost
hedging portfolios that simultaneously take long and short positions of the cross-
section of the U.S. equities. The strategies are: the earnings-to-price ratio (E/P),
momentum (MOM) and the betting-against-beta factor (BAB, Frazzini and Pedersen
(2013)). These strategies cover three distinct types of investment styles (i.e., value
(E/P), trend following (MOM) and potential distortions induced by leverage (BAB))
and generate a range of Sharpe ratios.21 None of these strategies reflect transaction
costs and as such the Sharpe ratios are clearly somewhat overstated.

Two important ingredients to the Sharpe ratio adjustment are the initial value
of the Sharpe ratio and the number of trials. To highlight the impact of these two
inputs, we focus on the simplest independent case as in Section 2. In this case,
the multiple testing p-value pM and the independent testing p-value pI are linked
through Equation (4). When pI is small, this relation is approximately the same as
in Bonferroni’s adjustment. Hence, the multiple testing adjustment we use for this
example can be thought of as a special case of Bonferroni’s adjustment.

Table 1 shows the summary statistics for these strategies. Among these strategies,
the strategy based on E/P is least profitable as measured by the Sharpe ratio. It has
an average monthly return of 0.43% and a monthly standard deviation of 3.47%. The
corresponding annual Sharpe ratio is 0.43(= (0.43%×

√
12)/3.47%). The p-value for

21For E/P , we construct an investment strategy that takes a long position in the top decile
(highest E/P ) and a short position in the bottom decile (lowest E/P ) of the cross-section of E/P
sorted portfolios. For MOM , we construct an investment strategy that takes a long position in the
top decile (past winners) and a short position in the bottom decile (past losers) of the cross-section
of portfolios sorted by past returns. Both the data for E/P and MOM are obtained from Ken
French’s on-line data library for the period from July 1963 to December 2012. For BAB, return
statistics are extracted from Table IV of Frazzini and Pedersen (2013).

12



Table 1: Multiple Testing Adjustment for Three Investment Strategies

Summary statistics for three investment strategies: E/P , MOM and BAB (betting-
against-beta, Frazzini and Pedersen (2013)). “Mean” and “Std.” report the monthly mean

and standard deviation of returns, respectively; ŜR reports the annualized Sharpe ratio;
“t-stat” reports the t-statistic for the independent hypothesis test that the mean strategy
return is zero (t-stat = ŜR ×

√
T/12); pI and pM report the p-value for independent and

multiple test, respectively; ŜR
adj

reports the Bonferroni adjusted Sharpe ratio; ĥc reports

the haircut for the adjusted Sharpe ratio (ĥc = (ŜR− ŜR
adj

)/ŜR).

Strategy Mean(%) Std.(%) ŜR t-stat pI pM ŜR
adj

ĥc
(monthly) (monthly) (annual) (annual)

Panel A: N = 10

E/P 0.43 3.47 0.43 2.99 2.88× 10−3 2.85× 10−2 0.31 26.6%
MOM 1.36 7.03 0.67 4.70 3.20× 10−6 3.20× 10−5 0.60 10.9%
BAB 0.70 3.09 0.78 7.29 6.29× 10−13 6.29× 10−12 0.74 4.6%

Panel B: N = 50

E/P 0.43 3.47 0.43 2.99 2.88× 10−3 1.35× 10−1 0.21 50.0%
MOM 1.36 7.03 0.67 4.70 3.20× 10−6 1.60× 10−5 0.54 19.2%
BAB 0.70 3.09 0.78 7.29 6.29× 10−13 3.14× 10−11 0.72 7.9%

Panel C: N = 100

E/P 0.43 3.47 0.43 2.99 2.88× 10−3 2.51× 10−1 0.16 61.6%
MOM 1.36 7.03 0.67 4.70 3.20× 10−6 1.60× 10−5 0.51 23.0%
BAB 0.70 3.09 0.78 7.29 6.29× 10−13 6.29× 10−11 0.71 9.3%

independent test is 0.003, comfortably exceeding a 5% benchmark. However, when
multiple testing is taken into account and assuming that there are ten trials, the
multiple testing p-value increases to 0.029. The haircut (ĥc), which captures the
percentage change in the Sharpe ratio, is about 27%. When there are more trials, the
haircut is even larger.

Sharpe ratio adjustment depends on the initial value of the Sharpe ratio. Across
the three investment strategies, the Sharpe ratio ranges from 0.43 (E/P ) to 0.78
(BAB). The haircut is not uniform across different initial Sharpe ratio levels. For
instance, when the number of trials is 50, the haircut is almost 50% for the least
profitable E/P strategy but only 7.9% for the most profitable BAB strategy.22 We
believe this non-uniform feature of our Sharpe ratio adjustment procedure is eco-
nomically sensible since it allows us to discount mediocre Sharpe ratios harshly while
keeping the exceptional ones relatively intact.

22Mathematically, this happens because the p-value is very sensitive to the t-statistic when the
t-statistic is large. In our example, when N = 50 and for BAB, the p-value for a t-statistic of
7.29 (independent test) is one 50th of the p-value for a t-statistic of 6.64 (multiple testing adjusted
t-statistic), i.e., pM/pI ≈ 50.
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4.2 Sharpe Ratio Adjustment for a New Strategy

Given the population of investment strategies that have been published, we now
show how to adjust the Sharpe ratio of a new investment strategy. Consider a new
strategy that generates a Sharpe ratio of ŜR in T periods,23 or, equivalently, the
p-value pI . Assuming that N other strategies have been tried, we draw N t-statistics
from the mixture distribution as in HLZ. These N + 1 p-values are then adjusted
using the aforementioned three multiple testing procedures. In particular, we obtain
the adjusted p-value pM for pI . To take the uncertainty in drawing N t-statistics into
account, we repeat the above procedure many times to generate a sample of pM ’s.
The median of this sample is taken as the final multiple testing adjusted p-value. This
p-value is then transformed back into a Sharpe ratio — the multiple testing adjusted
Sharpe ratio. Figure 2 shows the original vs. adjusted Sharpe ratios and Figure 3
shows the corresponding haircut.

First, as previously discussed, the haircuts depend on the levels of the Sharpe
ratios. Across the three types of multiple testing adjustment and different numbers
of tests, the haircut is almost always above and sometimes much larger than 50%
when the annualized Sharpe ratio is under 0.4. On the other hand, when the Sharpe
ratio is greater than 1.0, the haircut is at most 25%. This shows the 50% rule of
thumb discount for the Sharpe ratio is inappropriate: 50% is too lenient for relatively
small Sharpe ratios (< 0.4) and too harsh for large ones (> 1.0). This nonlinear
feature of the Sharpe ratio adjustment makes economic sense. Marginal strategies
are heavily penalized because they are likely false “discoveries”.

Second, the three adjustment methods imply different magnitudes of haircuts.
Given the theoretical objectives that these methods try to control (i.e., family-wise
error rate (FWER) vs false discovery rate (FDR)), we should divide the three ad-
justments into two groups: Bonferroni and Holm as one group and BHY as the other
group. Comparing Bonferroni and Holm’s method, we see that Holm’s method im-
plies a smaller haircut than Bonferroni’s method. This is consistent with our previous
discussion on Holm’s adjustment being less aggressive than Bonferroni’s adjustment.
However, the difference is relatively small (compared to the difference between Bon-
ferroni and BHY), especially when the number of tests is large. The haircuts under
BHY, on the other hand, are usually a lot smaller than those under Bonferroni and
Holm when the Sharpe ratio is small (< 0.4). For large Sharpe ratios (> 1.0), however,
the haircuts under BHY are consistent with those under Bonferroni and Holm.

In the end, we would advocate the BHY method. The FWER seems appropriate
for applications where there is a severe consequence of a false discovery. In financial
applications, it seems reasonable to control for the rate of false discovery rather than
the absolute number.

23Assuming T is in months, if ŜR is an annualized Sharpe ratio, t-stat = ŜR×
√
T/12; if ŜR is

a monthly Sharpe ratio, t-stat = ŜR×
√
T .

14



Figure 2: Original vs. Adjusted Sharpe Ratios
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Figure 3: Haircuts
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4.3 Adjusted VaR

Our framework allows us to adjust the backtested performance of an investment
strategy. Due to multiple testing, we adjust the backtested empirical distribution of
a strategy either by shifting its mean to the left and/or by inflating its variance, both
of which contribute to a reduction in the Sharpe ratio. Our approach also allows us
to consider the modification of other risk measures. We illustrate this by adjusting
V aR (Value at Risk), a widely used measure for tail risks.24

We define V aR(α) of a return series to be the α-th percentile of the return dis-
tribution. Assuming that returns are approximately normally distributed, it can be
shown that V aR is related to Sharpe ratio by:

V aR(α)

σ
= SR− zα, (6)

where zα is the z-score for the (1−α)-th percentile of a standard normal distribution
and σ is the standard deviation of the return.25 The same relationship holds for

the adjusted V aR, i.e., V̂ aR(α)
σ̂

= ŜR − zα, where σ̂ is the volatility for the adjusted

returns. Due to multiple testing, the adjusted Sharpe ratio ŜR is always smaller than
the original Sharpe ratio SR. This implies that the adjusted V aR, scaled by the
volatility for the adjusted returns, is more negative than the original V aR/σ.

Figure 4 shows the original and the adjusted V aR, scaled by their respective
volatility. Since V aR is mainly interesting over relatively short investment horizons,
we focus on monthly observations. The decline in the V aR/σ is substantial. For
instance, when there are one hundred tests and α = 1%, the original V aR/σ is -1.73
for a Sharpe ratio of 0.6. The Sharpe ratio shrinks to essentially zero due to multiple
testing and implies an adjusted V aR/σ of -2.33. If backtesting does not inflate return
volatility, i.e., σ = σ̂, the adjusted V aR is smaller than the original V aR by 0.6 of
the return volatility.

24For returns that are skewed or heavy-tailed, the Sharpe ratio is a misleading measure of per-
formance.

25Instead of the absolute V aR, we focus on the volatility scaled V aR as it is a function of the
Sharpe ratio only.
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Figure 4:
VaR
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5 Conclusions

We provide a real time evaluation method for determining the significance of a can-
didate trading strategy. Our method explicitly takes into account that hundreds of
strategies have been proposed and tested in the past. Given these multiple tests,
inference needs to be recalibrated.

Our method follows the following steps. First, we transform the Sharpe ratio into
a t-ratio and determine its probability value, e.g., 0.05 for a t-ratio of 2. Second, we
determine what the p-value should be explicitly recognizing the multiple tests that
preceded the particular investment strategy. Third, based on this new p-value, we
transform the corresponding t-ratio back to a Sharpe ratio. The lower Sharpe ratio
explicitly takes the multiple testing or data snooping into a account. Our method
is readily applied to popular risk metrics, like Value at Risk (VaR). If data mining
inflates Sharpe ratios, it makes sense that VaR metrics are understated. We show
how to adjust the VaR for multiple tests.

There are many caveats to our method. We do not observe the entire history
of tests. In addition, we use Sharpe ratios as our starting point. Our method is
not applicable insofar as the Sharpe ratio is not the appropriate measure (e.g., non-
linearities in trading strategy or the variance not being a complete measure of risk).

Of course, true out-of-sample test of a particular strategy (not a “holdout” sample)
is a cleaner way to evaluate the viability of a strategy. For some strategies, models can
be tested on “new” (previously unpublished) data or even on different (uncorrelated)
markets. However, for the majority of strategies, out of sample tests are not available.
Our method allows for decision to be made, in real time, on the viability of a particular
strategy.
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Appendix: The Program

We make the code and data for our calculations publicly available at http://faculty.fuqua.
duke.edu/˜charvey/ backtesting. The Matlab function allows the user to specify key
parameters for our procedure and investigate the impact on the Sharpe ratio. The
function SR adj multests has seven inputs that provide summary statistics for a re-
turn series of an investment strategy and the number of tests that are allowed for.
The first input is the sampling frequency for the return series. Five options (daily,
weekly, monthly, quarterly and annually) are available.26 The second input is the
number of observations in terms of the sampling frequency provided in the first step.
The third input is the Sharpe ratio of the returns. It can either be annualized or based
on the sampling frequency provided in the first step; it can also be autocorrelation
corrected or not. Subsequently, the fourth input asks if the Sharpe ratio is annualized
and the fifth input asks if the Sharpe ratio is corrected for autocorrelation.27 The
sixth input asks for the autocorrelation of the returns if the Sharpe ratio has not been
corrected for autocorrelation.28 Lastly, the seventh input is the number of tests that
are assumed.

To give an example of how the program works, suppose that we have an investment
strategy that generates an annualized Sharpe ratio of 1.0 over 120 months. The Sharpe
ratio is not autocorrelation corrected and the monthly autocorrelation coefficient is
0.1. We allow for 100 tests in multiple testing. With these information, the input
vector for the program is

Input vector = [3, 120, 1, 1, 0, 0.1, 100]′.

Passing this input vector to SR adj multests, the function generates a sequence of
outputs, as shown in Figures 4 and 5. For the intermediate outputs in Figure 4, the
program summarizes return characteristics by showing an annualized, autocorrelation
corrected Sharpe ratio of 0.912 that is based on 120 month of observations. For the
final outputs in Figure 5, the program generates adjusted p-values, adjusted Sharpe
ratios and the haircuts involved for these adjustments under a variety of adjustment
methods. For instance, under BHY, the adjusted annualized Sharpe ratio is 0.612
and the associated haircut is 33.0%.

26We use number one, two, three, four and five to indicate daily, weekly, monthly, quarterly and
annually sampled returns, respectively.

27For the fourth input, “1” denotes a Sharpe ratio that is annualized and “0” denotes otherwise.
For the fifth input, “1” denotes a Sharpe ratio that is autocorrelation corrected and “0” denotes
otherwise.

28We follow Lo (2002) to adjust Sharpe ratios for autocorrelations.

23



Figure 5: Intermediate outputs

Figure 6: Final outputs
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